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The Effect of Ion Slip on the Flow of Reiner-Rivlin Fluid Due
a Rotating Disk with Heat Transfer
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The magnetohydrodynamic rotating disk flow and heat transfer of a non-Newtonian Reiner-

Rivlin conducting fluid is studied considering the ion slip. The governing nonlinear equations

are solved numerically using finite differences. The results show that the inclusion of the ion slip

and the non-Newtonian fluid characteristics have interesting effects on the velocity and tem-

perature distributions.
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1. Introduction

The boundary layer induced by a rotating disk
of great scientific importance owing to itsa rele-
vance to applications in many areas such as rota-
ting machinery, lubrication, oceanography, com-
puter storage devices, viscometer, turbo-machinary,
crystal growth processes, and chemical vapor de-
position reactor. The hydrodynamic flow due to
an infinite rotating disk was first formulated by
von Karman (1921), then asymptotic solution for
the governing equations was obtained by Cochran
(1934) and Benton (1966), respectively, in the steady
and unsteady state. Later, the rotating disk prob-
lem is studied by many authors under different
physical conditions (Lee et al., 0000). Rotating
disk flows of a electrically conducting fluids was
studied by many researchers (Attia, 1998 ; Aboul-
Hassan and Attia, 1997 ; Attia and Aboul-Hassan,
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2001) without the ion slip. The steady rotating
disk flow of a non-Newtonian fluid was consid-
ered in (Mithal, 1961 ; Srivastava, 1961). The prob-
lem of heat transfer from a rotating disk maintained
at a constant temperature was first considered by
Millsaps and Pohlhausen (1952) for a variety of
Prandtl numbers in the steady state. Sparrow and
Gregg (1960) studied the steady state heat trans-
fer from a rotating disk maintained at a constant
temperature to fluids at any Prandtl number. Later
Attia (2003) extended the problem discussed in
(Millsaps and Pohlhausen, 1952 ; Sparrow and
Gregg, 1960) to the unsteady state in the presence
of an applied uniform magnetic field and obtained
a numerical solution for the relevant equations
for any Prandtl number while the Hall current
and ion slip were neglected. In fact, the Hall effect
is important when the Hall parameter, which is the
ratio between the electron—cyclotron frequency and
the electron-atom-collision frequency, is high.
This happens when the magnetic field is high or
when the collision frequency is low (Crammer
and Pai, 1973). Furthermore, the masses of the
ions and electrons are different and, in turn, their
motions will be different. Usually, the diffusion
velocity of electrons is larger than that of ions
and, as a first approximation, the electric current
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density is determined mainly by the diffusion ve-
locity of the electrons. However, when the elec-
tromagnetic force is very large (such as in the case
of strong magnetic field), the diffusion velocity of
the ions may not be negligible (Crammer and Pai,
1973). If we include the diffusion velocity of ions
as well as that of electrons, we have the pheno-
mena of ion slip. In the above mentioned work,
the Hall and ion slip terms were ignored in ap-
plying Ohm’s law, as they have no marked effect
for small and moderate values of the magnetic
field. However, the current trend for the applica-
tion of magnetohydrodynamics is towards a strong
magnetic field, so that the influence of the elec-
tromagnetic force is noticeable under these con-
ditions, and the Hall current as well as the ion
slip are important ; they have a marked effect on
the magnitude and direction of the current densi-
ty and consequently on the magnetic-force term
(Crammer and Pai, 1973).

In the present work the unsteady magnetohy-
dromagnetic (MHD) flow with heat transfer of
an incompressible, non-Newtonian Reiner-Rivlin
fluid, and electrically conducting fluid due to the
uniform rotation of an infinite non-conducting
disk in an axial uniform steady magnetic field is
studied considering the ion slip. The induced mag-
netic field is neglected by assuming a very small
magnetic Reynolds number (Crammer and Pai,
1973). The governing non-linear differential equa-
tions are solved numerically using the finite dif-
ference approximations. Some interesting effects
for the Hall current, the ion slip, and the non-
Newtonian fluid characteristics on the velocity
and temperature fields are reported.

2. Basic Equations

The disk is assumed to be insulating and ro-
tating impulsively from rest in the z=0 plane
about the z-axis with a uniform angular velocity
w. The fluid is assumed to be incompressible and
has density o, kinematical viscosity v, and elec-
trical conductivity ¢. An external uniform mag-
netic field is applied in the z-direction and has a
constant flux density B,. The magnetic Reynolds
number is assumed to be very small, so that the

induced magnetic field is negligible. The electron-
atom collision frequency is assumed to be rela-
tively high, so that the Hall effect and the ion slip
can not be neglected (Crammer and Pai, 1973).
Due to the axial symmetry of the problem about
the z-axis, the cylindrical coordinates (7, @, z)
are used. For the sake of definiteness, the disk is
taken to be rotating in the positive ¢ direction.
Due to the symmetry about the z=0 plane, it is
sufficient to consider the problem in the upper
half space only. The non-Newtonian fluid con-
sidered in the present paper is that for which the
stress tensor 77 is related to the rate of strain ten-
sor ¢! as (Mithal, 1961),

=2pei+2puceref—poi, ei=

where p is denoting the pressure, x is the co-
efficient of viscosity and g is the coefficient of
cross viscosity. If the Hall and ion slip terms are
retained in generalized Ohm’s law, then the equa-
tions of unsteady motion in cylindrical coordi-
nates (Crammer and Pai, 1973)
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where #%,v, and w are the velocity components
in the directions of increasing 7, ¢, and z, B; is
0BB, is the Hall para-
meter which can take positive or negative values,

the ion slip parameter, S.=

B=1/ngq is the Hall factor, # is the electron con-
centration per unit volume, —¢ is the charge of

the electron (Crammer and Pai, 1973). Positive
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u=0, v=0, T=T,,

u=0, v=or, w=0, T=T,,

Fig. 1 Physical model and coordinate system

values of B. mean that B, is upwards and the
electrons of the conducting fluid gyrate in the
same sense as the rotating disk. For negative val-
ues of Be,Bo is downwards and the electrons
gyrate in an opposite sense to the disk. We intro-
duce von Karman transformations (von Karman,
1921),

u=rokF, v=roG, w=JwvH,
z2=vVv/w&, p—pe=

where ¢ is a non-dimensional distance measur-
ed along the axis of rotation, F', G, H and P are
non-dimensional functions of the modified verti-

—ovwP

cal coordinate ¢ and ¢#. We define the magnetic
interaction number y by y=0B%/0w which re-
presents the ratio between the magnetic force to
the fluid inertia force. With these definitions, Eqs.
(1) ~ (4) take the form
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where K is the parameter which describes the
non-Newtonian behavior, K= ./ pw and it re-
presents the ratio of the shear stress due to viscous
property to the normal stress accompanying with
the elastic property of the fluid. The boundary
conditions are given as

t=0, F=0, G=0, H=0 (9a)
£=0, F=0, G=1, H=0 (9b)
§—> oo, F>0,G—0, P—0 (9¢)

The initial condition are given by Eq. (9a). Equa-
tion (9b) indicates the no-slip conditions of vis-
cous flow applied at the surface of the disk. and
ensures that the convective velocity normal to
the surface of the disk specifies the mass injection
or withdrawal. Far from the surface of the disk,
all fluid velocities must vanish aside the induced
axial component as indicated in Eq. (9¢c).

Due to the difference in temperature between
the wall and the ambient fluid heat transfer takes
place. The energy equation, by neglecting the dis-
sipation terms, takes the form (Mithal, 1961),

oT oT 0T T
pcP( or tugtw 02) k 0% =0 (10)

where T is the temperature of the fluid, % and
cp are the thermal conductivity and the specific
heat at constant pressure of the fluid. The bound-
ary conditions for the energy problem are that the
temperature, by continuity considerations, equals
Tw at the surface of the disk. At large distances
from the disk, T — T. where T is the tempera-
ture of the ambient fluid.

In terms of the non-dimensional variable §=
(T—T.) /(Tw—
formations, Eq. (10) takes the form,

T.) and using von Karman trans-

2
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dc (11)
where Pr is the Prandtl number given by, Pr=
cpit/ k. The boundary conditions in terms of [
are expressed as

t=0, V¢: 0=0, (12a)

{=0:0=1, { > 00, §—0 (12b)
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The significant velocity and temperature varia-
tions in the fluid are confined to the region ad-
jacent to the disk which constructs viscous as well
as thermal boundary layers. We define the thick-
ness of these layers by certain standard measures
(Sparrow and Gregg, 1960). The first of these is
the displacement thickness. Since the radial flow
is zero both at the disk surface and at infinity, a
radial displacement thickness would have very
little meaning. Then, for the tangential direction,
we define a displacement thickness as (Sparrow
and Gregg, 1960)

Bas= | Gdt

In physical terms, Jus gives the thickness of a
fictitious layer of fluid which is rotating at a
uniform tangential velocity 7w and is carrying a
tangential mass flow equal to that carried by the
actual tangential velocity distribution.

Also, as a measure of the extent of the thermal
layer, we may introduce a thermal thickness bas-
ed on the temperature excess (7 — T%) above the
ambient fluid. Then,

6= [~ odt

Physically speaking, &; is the thickness of a fic-
titious fluid layer at a temperature 73 whose in-
tegrated temperature excess over 7. is identical
with that of the actual temperature distribution.

Numerical solution for the governing nonlinear
Egs. (5) ~
using the finite-difference, leads to a numerical

(7) with conditions given by Eq. (9),

oscillation problem resulting from the disconti-
nuity between the initial and boundary conditions
(9a) and (9b
tween the initial and boundary conditions for the

). The same discontinuity occurs be-
energy equation (see Eq.(12)). A solution for
this numerical problem is achieved by using pro-
per coordinate transformations, as suggested by
Ames (1977) for similar problems. Expressing
Egs. (5) ~(7) and (11) in terms of the modified
coordinate p=¢/2/f we get
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Equations (13) ~ (16) represent coupled system
of non-linear partial differential equations which
are solved numerically under the initial and bound-
ary conditions (9) and (12) using the finite dif-
ference approximations. A linearization technique
is first applied to replace the non-linear terms at
a linear stage, with the corrections incorporated
in subsequent iterative steps until convergence is
reached. Then Crank-Nicolson implicit method
is used at two successive time levels (Ames, 1977).
An iterative scheme is used to solve the linearized
system of difference equations. The solution at a
certain time step is chosen as an initial guess for
next time step and the iterations are continued till
convergence, within a prescribed accuracy. Finally,
the resulting block tridiagonal system is solved
using the generalized Thomas-algorithm (Ames,
1977).

variables are obtained by writing the equations at

Finite difference equations relating the

the mid point of the computational cell and then
replacing the different terms by their second or-
der central difference approximations in the 72—
direction. The diffusion terms are replaced by the
average of the central differences at two successive
time-levels. The computational domain is divid-
ed into meshes each of dimension Af and A7 in
time and space, respectively. The modified Egs.
(13) ~ (16) are integrated from £=0 to £=1. Then,
the solution obtained at #=1 is used as the initial
condition for integrating Egs. (5) ~(7) and (11)
from =1 towards the steady state.
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The resulting system of difference equations
has to be solved in the infinite domain 0< ¢ <oco.
A finite domain in the ¢-direction can be used
instead with { chosen large enough to ensure that
the solutions are not affected by imposing the
asymptotic conditions at a finite distance. The
independence of the results from the length of
the finite domain and the grid density was en-
sured and successfully checked by various trial
and error numerical experimentations. Computa-
tions are carried out for & =10 which is adequate
for the ranges of the parameters studied here.
Larger finite distances or smaller step size do not
show any significant change in the results. Con-
vergence of the scheme is assumed when all of the
variables F,G,H, 0,0F/0¢,0G/d¢ and 00/0¢
for the last two successive approximations differs
from unity by less than 107° for all values of ¢
in 0< ¢ <10 and all ¢. It should be pointed that
the steady state solutions reported by Attia and
Aboul-Hassan (1997 ; 2001) when =0 and y=
0. Also, the steady state solutions reported by
Mithal (1961) and Srivastava (1961) are repro-
duced by setting y=0 in the present results.

3. Results and Discussion

The three velocity components F,G, and H
are obtained at different values of . These veloc-
ity components have some general characteristics
which can be predicted from the basic equations.
The value of H at a given { decreases as F in the
region below it increases. This follows from the
continuity equation. Neglecting the Hall and ion
slip effects (B8.=0,8:=0), the applied uniform
magnetic field (defined in terms of the parameter
y) represents the single effect of the magnetic field
on the flow. It is clear from Egs. (14) and (15)
that the magnetic field has a damping effect on the
radial and azimuthal velocity components due to
the magnetic resistive forces. Equations (13) till
then that the magnetic field has, in turn, a damp-
ing effect on the axial flow towards the disk.

The Hall parameter 3. appears in the magnetic
force terms and its contribution, neglecting the
ion slip (8:=0), is proportional to (F—f.G)/
(14 82) or (G4 BF) /(14 82). For small values

of Be, the effect of Be on the numerator is stronger
than its effect on the denominator. A small posi-
tive value of Be decreases the magnetic damping
on F and increases the magnetic damping on G,
thus increases F" and decreases both H and G. A
small negative value of Be decreases F' and in-
creases both H and G. For large positive values
of Be, the factor (F'—f.G) may turn out to be
negative and the magnetic field has a propelling
effect on F', which may exceed its hydrodynamic
value and thus the value of H is below its hydro-
dynamic value. For such large values of S, the
effect on G is due mainly to the factor 1/(1+ 5%)
which becomes very small and produces an in-
crease in G. For large negative values of Be, the
argument is reversed. The magnetic damping on
F is reduced to the decrease in 1/(1+83). Thus
Fincreases but is still less than its hydrodynamic
value, and consequently H decreases but is more
than its hydrodynamic value. The factor (G+ fe
F) may become negative and this pushes G above
its hydrodynamic value, thus the magnetic field
has a propelling effect on G. For very large posi-
tive or negative values of B, the magnetic force
term decreases much and the limit B, — +oo
or —oo corresponds to the hydrodynamic limit.

Considering the ion slip, the parameter a=
(14 8:8.) appears in the magnetic force terms and
its contribution is proportional to (aF —f.G)/
(a*+B2) or (aG+BF)/(a®+ %) . For small posi-
tive values of @, the effect of @ depends on the
magnitude and sign of both parameters /. and
B:. As the velocity component H increases, the
axial flow towards the disk decreases which av-
oids bringing fluid at near-ambient temperature
towards the surface of the disk. This decreases the
heat transfer at the surface of the disk. It is clear
that the heat transfer at the surface of the disk
increases as H decreases.

Figures 2(a) and (b) present the time develop-
ment of the axial velocity at infinity He. For
various values of the ion slip parameter [3; and
for 8.<0 and B.=0, respectively, in the case of
K=0. Figure 2(a) shows that, for 8,=—0.5 and
B:=0, H. reverses its direction at a certain dis-
tance from the disk. Increasing I, for 8.<0, in-
creasing H. and reverses its direction for all time
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as a result of increasing the effective conductivity
(=0/((1+pB:B.)?+ B5)) which increases the damp-
ing force on F' and consequently increases Ho.
Figure 2(a) indicates also that for B.83;>0, in-
creasing the magnitude of 3; decreases H. due
to the decrease in the effective conductivity which
decreases the damping force on F' and, in turn,
increases F* which decreases H.. Figure 2(b) in-

0.8

dicates that when (8.>0 and §3;>0, increasing j3;
increases H. while for 3;<0, increasing the mag-
nitude of /3; decreases He. It is of interest to de-
tect that the variation of H. with 3; depends on
t. Figures 3(a) and (b) present the time devel-
opment of the axial velocity at infinity H. for
various values of the ion slip parameter /3; and for
B.<0 and B.=0, respectively, in the case K=1.

3 6
t
~Be=0, Bi=0 —Be=0.5, Bi=0 ~+Be=0.5, Bi=0.5
- Be=0.5, Bi=1 ~Be=0.5, Bi=—0.5 < Be=0.5, Bi=—1
(b) B.=0

Fig. 2 Time development of H., for various values of §8; and K=0

_0 ‘ P— | 1 1 1 1
] 1 2 3 4 5 ]
t
- Be=0, Bi=0 —+Be=—0.5, Bi=0 - Be=—0.5, Bi=0.5
= Be=—0.5, Bi=1 —Be=—0.5, Bi=—0.5 - Be=—0.5, Bi=—1
(a) B.<0
2
1.6
‘ -
06
c 1 L 'l 1 1
[} 1 2 3 4 & 6
t
- Be=0, Bi=0 —~Be=—0.5, Bi=0 ~ Be=—0.5, Bi=0.5
= Be=—0.5, Bi=1 -~Be=—0.5, Bi=—0.5 = Be=—0.5, Bi=—1
(a) B.<0

0.4

0.3

0.2

-+ Be=0, Bi=0
-=Be=0.5, Bi=1

— Be=0.5, Bi=0
~Be=0.5, Bi=—0.5

(b) Be=0

-+ Be=0.5, Bi=0.5
~<-Be=0.5, Bi=—1

Fig. 3 Time development of H. for various values of 8; and K=1
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It is shown in the figure that increasing K de-
creases the axial flow towards the disk. Figure 3
(a) presents an interesting effect of K in reversing
the direction of the flow for all values of # and ..
It is clear from Fig. 3(b) that the parameter K
leads to the reversal of the direction of the axial
flow towards the disk for some time only with the
appearance of overshooting during the progres-
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0.8

84is 0.6

0.4

0.2

-+ Be=0, Bi=0
-+ Be=—0.5, Bi=1

—+Be=—0.5, Bi=0 ~+ Be=—0.5, Bi=0.5
~Be=—0.5, Bi=—0.5 - Be=—0.5, Bi=—1

(a) B.<0

sion of time for all values of §3;. The effect of j3;
on H.. is more pronounced for the non-Newtonian
K>o.

Figures 4(a) and (b) present the time develop-
ment of the tangential displacement thickness Oass
for various values of the ion slip parameter 3; and
for 8.<0 and B.=0, respectively, in case K=0.
As shown in Fig. 4(a), small negative values of

dais
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- Be=0.5, Bi=1 ~Be=0.5, Bi=—0.5 < Be=0.5, Bi=—1
(b) B.=0

Fig. 4 Time development of §4s for various values of 8; and K=0

1.6

Bgis

-+ Be=0, Bi=0
-+ Be=—0.5, Bi=1

—+ Be=—0.5, Bi=0
—~Be=—0.5, Bi=—0.5 -+ Be=—0.5, Bi=—1

(a) B.<0

Fig. 5 Time development of Jus for various values of 3; and K=1
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Be increases Ouis as a result of decreasing the
magnetic damping. Increasing /3;, with 3.<0, de-
creases Ouis, due to the increase in the effective con-
ductivity, and results in the appearance of over-
shooting in 4 during time in case of large (3.
Figure 4 (a) shows also that for negative values of
B: increasing the magnitude of J3; increases O
due to the decrease in the damping force on G.

1.2

8
0.6} — I e = —

0.4

0.2f

G 1 '} L

4] 1 2 3 4 8 6
t

—+Be=—0.5, Bi=0 ~+ Be=—0.5, Bi=0.5

~<Be=—0.5, Bi=—0.5 - Be=—0.5, Bi=—1

(a) BeSO
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Figure 4(b) describes the same findings. For /5;
B>0, increasing /3; increases O8as, While for /A;
B.<0, increasing the magnitude of /3; decreases
Oais. Figures 5(a) and (b) present the time devel-
opment of the tangential displacement thickness
Oass for various values of the ion slip parameter
fB: and for 5.<0 and [.=0, respectively, in the
case K=1. It is clear from the figure that as K
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Fig. 6 Time development of §; for various values of 5; and K=0
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Fig. 7 Time development of ¢§; for various values of 5; and K=1
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increases, Oqss increases for all values of 5. and f;.
The effect of 8; on 8ais is more pronounced for
K>0.

Figure 6(a) and (b) present the time develop-
ment of the thermal displacement thickness &
for various values of the ion slip parameter §3; and
for 8.<0 and B.=0, respectively, in the case K=
0. As shown in Fig. 6(a), for 8;=0, increasing
the magnitude of ., increases §; as a result of
increasing the axial flow velocity which avoids
bringing the fluid at near ambient temperature to
the disk and hence increases the temperature. In-
creasing /3; increases the axial flow velocity and
hence increases the temperature which increases
0:. On the other hand, for §3;<0, increasing the
magnitude of [3; decreases J; as a result of de-
creasing the axial flow velocity. Figure 6(b) shows
that, 3; has a pronounced effect on §; only when
B:.<0. In this case, increasing the magnitude of
B: decreases the temperature and then decreases
0+ due to its effect in damping the axial flow to-
wards the disk. Figure 7(a) and (b) present the
time development of the thermal displacement thick-
ness O; for various values of the ion slip para-
meter 3; and for 8.<0 and B.=0, respectively, in
the case =1 and Pr=10. The figures indicate
the effect of increasing J; as a result of increasing
K due to the influence of K in damping the axial
flow towards the disk. The effect of 8; on &, is
more pronounced for K >0.

4. Conclusions

The transient MHD flow and heat transfer of a
non-Newtonian Reiner-Rivlin fluid due to an in-
finite rotating disk are studied in the presence of
a uniform magnetic field perpendicular to its plane
with the ion slip. The inclusion of the Hall effect,
the ion slip and the non-Newtonian fluid charac-
teristics reveals some interesting phenomena and
it is found that the signs of the Hall and ion slip
parameters are important. It is of interest to find,
in the non-Newtonian case, that the axial flow
reverses direction for all time and for 8.<0 while,
for B.>0, it reverses direction during time with
the appearance of overshooting. Also, it is found
that the influence of the parameter [3; on the axial

flow and the heat transfer is more apparent for the
non-Newtonian case than the Newtonian case.
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